A Glucose-Utilizing Strain, Cupriavidus euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs

نویسندگان

  • Tatiana Volova
  • Evgeniy Kiselev
  • Olga Vinogradova
  • Elena Nikolaeva
  • Anton Chistyakov
  • Aleksey Sukovatiy
  • Ekaterina Shishatskaya
چکیده

This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, γ-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physical-mechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mcl-PHAs produced by Pseudomonas sp. Gl01 using fed-batch cultivation with waste rapeseed oil as carbon source.

The present study describes medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by the Pseudomonas Gl01 strain isolated from mixed microbial communities utilized for PHAs synthesis. A two-step fedbatch fermentation was conducted with glucose and waste rapeseed oil as the main carbon source for obtaining cell growth and mcl-PHAs accumulation, respectively. The results show that the P...

متن کامل

Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose.

Cupriavidus necator DSM 545 is a well-known polyhydroxyalkanoates (PHAs) producer, but unable to grow on lactose. The aim of this study was to construct a recombinant strain of C. necator that can use lactose-containing waste material such as cheese whey, to produce PHAs. One of the intracellular PHA depolymerases (phaZ1) of C. necator was chosen to insert the lacZ, lacI and lacO genes of Esche...

متن کامل

Bio-gold Nanoparticle Synthesis by Metalophilic Bacterium Cupriavidus necator

Background and Aims: Gold nanoparticles have potential applications in the areas of medicine, target drug delivery, cancer diagnosis and therapy, electronic, etc. Recently, biological system is considered as an environmental friendly method for synthesis of stable nanoparticles. Methods: We demonstrated a biological system for formation of stable gold nanoparticle by using Cupriavidus necator w...

متن کامل

Biosynthesis of polyhydroxyalkanotes in wild type yeasts.

Biosynthesis of biodegradable polymers polyhydroxyalkanotes (PHAs) have been studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHAs in wild type yeasts is not well documented. The purpose of this study was to screen yeast isolates collected from different ecosystems for their ability to accumulate PHAs. Identification of the isolat...

متن کامل

Poly(hydroxyalkanoate) Production by Cupriavidus necator from Fatty Waste Can Be Enhanced by phaZ1 Inactivation

Although PHAs are regarded as an effective substitute for conventional plastics for a number of medical and agricultural applications1 and food packaging2, their full-scale manufacturing is hampered by high production costs3. Factors affecting the cost of PHAs include raw materials availability, suitable process design, and downstream processing4,5. Since almost 50 % of the total production cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014